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1 Problem

The vena contracta (apparently first described by Torricelli in 1643)1 is the reduction in
the area/diameter of a fluid jet after it emerges from a circular aperture in a pressurized
reservoir.2 Make an estimate of the reduction in area based on a comparison of energy and
momentum in the system (Borda, 1766 [2]).

2 Solution

If there were no vena contracta, the fluid flow out of a (circular) aperture of area A2 in the
end wall of a (circular) pipe of area A1 be cylindrical, as sketched in the figure below.

We suppose that area A1 is large compared to A2, and that the fluid is incompressible,
such that

v1A1 = v2A2, (1)

where v1 and v2 are the average velocities of the fluid flow parallel to the axis of the pipe in
the regions of areas A1 and A2, respectively. Then,

v1 � v2. (2)

We also suppose that the flow velocities are small enough that energy loss due to viscosity
can be ignored. Then, Bernoulli’s Law holds for points along streamlines,

P1 +
1

2
ρv2

1 = P2 +
1

2
ρv2

2, (3)

1Torricelli could well have observed the vena contracta during his studies of water emerging from holes
in tanks, reported on pp. 191-204 of [1], though I don’t find explicit mention of this there.

2The vena contracta is distinct from the effect of gravity on an (incompressible) fluid jet, such that as
the jet falls and picks up speed v, its cross-sectional area A must decrease according to the vA = constant.
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where P is pressure and ρ is the (constant) mass density of the fluid. From eqs. (2) and (3)
we infer that

v2
2 ≈ 2

P1 − P2

ρ
. (4)

In addition, we consider the momentum in the system. The mass flux is ρvA, so the
momentum flux (momentum passing across area A per unit time) is ρv2A. The net flux of
momentum through a volume bounded by area A1 on the left and area A2 on the right is

dp

dt
= ρ(v2

2A2 − v2
1A1) ≈ ρv2

2A2. (5)

This change of momentum is associated with the net force on this volume,

F ≈ P1A1 − [P1(A1 −A2) + P2A2] = (P1 − P2)A2, (6)

noting that the pressure on the wall of area A1 − A2 is essentially P1. Then, equating this
force to the rate of change (5) of momentum in the fluid, we infer that

v2
2 ≈ P1 − P2

ρ
, (7)

in contradiction to the result (4) that was based on conservation of energy.
As noted by Borda, this contradiction is resolved in Nature by a contraction of the fluid

to area A3 after it passes through the aperture of area A2, as sketched below.

The momentum flux is actually

dp

dt
= ρ(v3

2A3 − v2
1A1) ≈ ρv2

3A3 ≈ 2P1A3, (8)

according to Bernoulli’s equation in the limit that P3 � P1. The force that causes this
momentum change is now3

F ≈ P1A1 − [P1(A1 − A2) + P3A3] = P1A2 − P3A3 ≈ P1A2. (9)

3The surface tension balances the force on the surface of the fluid jet due to the difference in pressures
inside and outside the jet. Hence, eq. (9) includes no term associated with the difference in areas A2 − A3.
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Altogether, we estimate the vena contracta to be

A3 =
A2

2
. (10)

Experiment indicates that the ratio A3/A2 is close to 0.64.4

A Appendix: Vena Contracta in Two-Dimensional

Potential Flow Through a Slot

A comment by Maxwell [4] in 1869 on the vena contracta suggested that a more accurate
analysis could be based on the velocity potential φ that exists when the flow is irrotational
(∇ × v = 0 ⇒ v = −∇φ). If the fluid is incompressible, such that ∇ · v = 0, the velocity
potential satisfies Laplace’s equation ∇2φ = 0.

Recall that any analytic function w(z) = φ+ iψ of the complex variable z = x+ iy obeys
the Cauchy-Riemann equations,

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
, (11)

which imply that ∇2φ = 0 = ∇2ψ. That is, any analytic function of a complex variable can,
in principle, be related to the velocity potential of some two-dimensional, incompressible,
irrotational fluid flow. Furthermore, the curves ψ(x, y) = constant follow streamlines of the
potential φ(x, y) (and vice versa).

The case of potential flow through slots in two dimensions was discussed by Helmholtz [5]
in 1868, by Kirchhoff [6] in 1869, and the explicit relation of their work to the vena contracta
was noted by Rayleigh [7] in 1876. Helmholtz [5] argued that if the flow is constrained by
planar boundaries in some region of the (x, y) plane (with streamlines along, say, constant y
for x < x0) then it is useful to consider an implicit function z = f(w) such as z = w + ew =
φ + eφ cosψ + i(φ + eφ sinψ) = x + iy. This proves to describe fluid flow down a channel
(and into an infinite, surrounding reservoir) defined by two parallel planes (x ≤ 1, y = ±π)
that correspond to the streamlines ψ = ±π.5

Kirchhoff [6] noted that if the fluid flow includes a free surface, on which the pressure
is constant, then Bernoulli’s equation implies that the velocity of the fluid flow is constant
on this surface. This velocity can always be scaled to unity. Then, since v = −∇φ =
−(∂φ/∂x, ∂φ/∂y), the scaled flow on a free surface obeys

(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

= 1. (12)

Furthermore, the Jacobian transformation of area elements tells us that

dx dy = J dφ dψ = JJ ′ dx dy, (13)

4The vena contracta was discussed (but not so named) by Newton in Book II, Prop. 36 of [3], where he
reported (p. 333) that A3/A2 = (5/6)2 = 0.69.

5The same function usefully describes the equipotentials and field lines at the edge of a two-dimensional
capacitor, as discussed by Maxwell in sec. 202 of his Treatise [8].
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so JJ ′ = 1. The Cauchy-Riemann equations for φ+ iψ = w(x+ iy) and x+ iy = w−1(φ+ iψ)
allow us to write the Jacobian determinants as

J =
∂φ

∂x

∂ψ

∂y
− ∂φ

∂y

∂ψ

∂x
=

(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

, and J ′ =

(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

. (14)

Then, the scaled flow on a free surface also obeys(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

= 1. (15)

Kirchhoff [6] extended Helmholtz’ technique of functions w(z) that are defined implicitly
via knowledge of z(w) by consideration of the derivative dz/dw defined as

dz

dw
= −f(w) −

√
f2(w) − 1, (16)

arguing that if along some portion of a streamline ψ = constant the function f is real and
|f | less than 1, then dx/dφ = Re(dz/dw) = −f and dy/dφ = Im(dz/dw) = −√

1 − f2, such
that eq. (15) is satisfied, and this portion of the streamline corresponds to a free surface of
the fluid flow.

In particular, the function

f = e−w = e−φ cosψ − ie−φ sinψ (17)

obeys eq. (15) for ψ = 0 and φ > 0. The free surface is defined by the equations

dx

dφ
= −f = −e−φ,

dy

dφ
= −

√
1 − f2 = −

√
1 − e−2φ (φ > 0, ψ = 0), (18)

which integrate to

x = e−φ − 1, y =
√

1 − e−2φ − ln
(
eφ +

√
e2φ − 1

)
(φ > 0, ψ = 0), (19)

taking the free surface to begin at the origin, and using Dwight 361.01 after the substitution
s = e−φ. On this streamline (ψ = 0) but for φ < 0 the derivative dz/dw = dz/dφ is real
and negative, so y stays constant at 0 while x increases from 0 to ∞ as φ decreases. The
streamlines ψ = 0 and π are illustrated in the figure below by Kirchhoff.
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Similarly, the streamline ψ = π also obeys eq. (15) for φ > 0, such that

dx

dφ
= e−φ,

dy

dφ
= −

√
1 − e−2φ (φ > 0, ψ = π), (20)

which integrate to

x = −x0 + 1 − e−φ, y =
√

1 − e−2φ − ln
(
eφ +

√
e2φ − 1

)
(φ > 0, ψ = π). (21)

On this streamline dz/dφ is real and negative for φ < 0, so y is again constant at 0 while x
decreases from −x0 to −∞.

Furthermore, on the streamline ψ = π/2, dz/φ is purely imaginary so that x is constant
(at −x0/2), and this streamline is the symmetry axis of the flow.

The constant x0 can be determined by noting that for large negative y the streamlines
0 ≤ ψ ≤ π are all in the y direction, so the corresponding equipotentials of φ are at constant
y. Then, the velocity v = −∇φ is constant across the jet, with value unity, such that
integrating across the jet at large negative y we find, using the Cauchy-Riemann equations
(11),

Δψ = π =

∫ −1

−x0+1

∂ψ

∂x
dx = −

∫ −1

−x0+1

∂φ

∂y
dx = v

∫ −1

−x0+1

dx = x0 − 2, (22)

and hence the width of the aperture is x0 = π + 2. Thus, we determine the vena contracta
to be

Acontracted jet =
π

π + 2
Aaperture = 0.61Aaperture. (23)

According to eq. (19), 90% of the contraction has occurred when e−φ = 0.1, at which
y ≈ −2. That is, 90% of contraction occurs within a distance from the aperture of 0.4 of its
width.

B Appendix: Borda’s Mouthpiece

Kirchhoff (and earlier, Helmholtz) also considered the function

f = −1 − e−w = −1 − e−φ cosψ + ie−φ sinψ, (24)

which is real with |f | < 1 for ψ = π and φ > − ln 2. The free surface is defined by the
equations

dx

dφ
= −f = 1 − e−φ,

dy

dφ
= −

√
1 − f2 = −

√
2e−φ − e−2φ (φ > − ln 2, ψ = π), (25)

which integrates to

x = φ+ e−φ − 2 + ln 2, y =
√

2e−φ − e−2φ − sin−1(1 − e−φ)− π

2
(φ > − ln 2, ψ = π),

(26)
taking the free surface to begin at the origin, and using Dwight 380.311 and 380.001 after the
substitution s = e−φ. On the portion of the streamline with φ < − ln 2, the derivative dz/dw
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is purely real, so dy/dφ = 0 and y stays constant at zero; this portion of the streamline is
the positive x-axis.

The streamline ψ = −π defines the other free surface for φ > − ln 2; for φ < − ln 2 it
defines the other boundary surface, which is parallel to the positive x-axis at −y0, where
y0 is width of the aperture. The streamlines ψ = ±π are illustrated in the figure below by
Kirchhoff.6

At large x the upper surface of the free jet is at y = −π; the width of the jet here is
Δψ = 2π, and the lower surface of the jet is at height π above the bottom of the aperture.
That is, the aperture has width 4π, and the width of the contracted jet is 1/2 that of the
aperture.

The present example, with a pipe that is re-entrant into a large reservoir of fluid, cor-
responds exactly to the momentum argument of Borda (sec. 2) that the area of the free
jet contracts to 1/2 its initial value. Hence, a re-entrant pipe is sometimes called Borda’s
mouthpiece.
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